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A Facile Method for Synthesizing TiO2 Sea-Urchin-Like Structures and Their
Applications in Solar Energy Harvesting ∗
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1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences,

Beijing 100190
2College of Science, Minzu University of China, Beijing 100081

(Received 5 May 2011)
We present a new method to prepare TiO2 sea-urchin-like structures, which involves the initial formation of tubu-
lar nanostructures and subsequent self-assembly of the nanotubes into micrometer-scale sea-urchin-like structures.
We also investigate the important role of alkali aqueous conditions in the preparation of TiO2 sea-urchin-like struc-
tures. This facile and cost-effective approach provides a new route for the preparation of self-assembled TiO2

structures. In addition, the performance of the as-synthesized TiO2 sea-urchin-like structures as the active layer
of an efficient solar energy harvester is also studied and discussed.

PACS: 81.07.De, 88.40.H, 85.35.Kt DOI:10.1088/0256-307X/28/7/078103

Ever since the structure of carbon nanotubes was
elucidated by Iijima in 1991,[1] a great deal of atten-
tion has been paid to the synthesis and characteri-
zation of one-dimensional (1D) nanomaterials due to
their unique shape-dependent properties.[2−5] Recent
studies have shown that various 1D nanomaterials can
be synthesized readily.[6−8] Among these nanomateri-
als, TiO2 nanotubes are of particular interest due to
their wide bandgaps with desirable band-edge posi-
tions and biocompatibility, which enable their appli-
cation in photocatalysis,[8] solar energy harvesting,[9]

photoelectrolysis, etc.[10] Synthesis of TiO2 nanos-
tructures can be achieved by various routes, includ-
ing the template-assisted method,[11] anodic oxida-
tion approaches[12] and the wet chemical method.[13]

A simple hydrothermal method for producing large
amounts of TiO2 nanotubes was first proposed by Ka-
suga et al.[13] in 1998, followed by an investigation
of the mechanism of TiO2 nanotube formation in al-
kali solution to establish the crystal structure of the
nanotubes.[14] However, cost-effective large-scale syn-
thesis methods with a rational control in the size, mor-
phology and particularly the assembly of TiO2 nanos-
tructures have yet to be developed. Mao et al.[15] re-
ported the three-dimensional (3D) assembly of TiO2

1D nanostructures using a modified H2O2-assisting
hydrothermal method. In this Letter, we report a sim-
ple and facile method to synthesize TiO2 sea-urchin-
like nanostructures, which is based on the hydrother-
mal method reported by Kasuga et al. Since the hy-
drothermal method is widely used in preparing TiO2

nanomaterials, the approach we present here should
be very helpful for the preparation of self-assembled
TiO2 nanostructures. Applications of these TiO2 sea-
urchin-like structures as active layers of dye-sensitized
solar cells have also been investigated.

The synthesis and self-assembly of nanotubes
into micrometer-scale sea-urchin-like structures was
performed through a modified hydrothermal ap-
proach, including the initial transformation from
TiO2 nanoparticles to tubular nanostructures and
the subsequent self-assembly of the nanotubes into
sea-urchin-like structures in alkali aqueous solutions.
The typical synthetic process is shown in Fig. 1. All
reagents were analytical grade and used as received
without further purification. There was 1 g TiO2

nanoparticle powder (Aldrich, purity = 99.9%, av-
erage size of about 100 nm) added into 80mL 10M
NaOH aqueous solution (Beijing Chemical Reagents
Company, purity =96.0%) and the mixture was stirred
for 30min at room temperature. The obtained suspen-
sion was then transferred into a 100 mL Teflon-lined
stainless autoclave and heated up to 160◦ for 30 hours.
When this hydrothermal treatment was completed,
the Teflon-lined stainless autoclave was cooled down
to room temperature naturally. The as-synthesized
products were then divided into two groups, denoted
as samples A and B, respectively. Sample A was kept
in the Teflon-lined stainless autoclave for a week under
room temperature. Then the white precipitates were
subsequently purified by centrifugation and washed
using 0.1 M HCl aqueous solution for three times and
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later with de-ionized water until the pH value of the
supernatant was close to 7. The obtained precipitates
were then annealed at 300◦ in air before further char-
acterization. While sample B was purified with cen-
trifugation immediately after the hydrothermal treat-
ment. The centrifugation and annealing process were
performed under the same conditions as for sample A.
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Fig. 1. The synthesis sequence of sea-urchin-like TiO2

nanostructures.

The structure, morphology and chemical compo-
sitions of the as-prepared samples were characterized
using scanning electron microscopy (LV-SEM, JSM-
5900LV), transmission electron microscopy (JEOL
TEM 3010) and energy dispersive x-ray spectroscopy
(EDX). The results are shown in Fig. 2. Figure 2(a)(1)
and Figure 2(b)(1) are the SEM images of samples A
and B, respectively. Sea-urchin-like structures with
diameters around 2µm can be observed from sam-
ple A as shown in Fig. 2(a)(1), for which the precip-
itates of the hydrothermal treatment were kept with
further processing in the Teflon-lined stainless auto-
clave for an additional week. However, if the prod-
ucts of hydrothermal treatment were processed im-
mediately with diluted HCl aqueous solution and de-
ionized water, only random tubular structures were
observed, as shown in Fig. 2(b)(1). From the EDX
results, both samples A and B can be determined as
TiO2 materials. To further investigate the structures
of the samples, TEM analyses were carried out. It
can be clearly seen that the sea-urchin-like structures
(sample A) are the ordered assembly of tubular ma-
terials under the alkali condition at room tempera-
ture. It should be noted that these 3D sea-urchin-like
structures can preserve their morphology even after
sonication. From the comparison of these images, it
can be seen that the as-synthesized products were sea-
urchin-like structures when kept in the alkali aqueous
solutions for a week (sample A). If the white precipi-
tates were washed immediately after the hydrothermal
treatment, the resulting products were tubular struc-
tures. This indicates that the alkali condition is es-
sential for the assembly of nanotubes into sea-urchin-
like structures. This conclusion can also be supported
by the fact that only tubular nanostructures were ob-
served when sample B (washed immediately after hy-

drothermal treatment) was kept in neutral solution for
one week. Therefore, sea-urchin-like structures cannot
be formed without the alkali treatment. It has been
reported that NaOH aqueous solutions play an impor-
tant role in the formation of TiO2 nanotubes.[14] The
alkali conditions used in our experiment may have sim-
ilar effects for the transformation from tubular nanos-
tructures to sea-urchin-like structures at room tem-
perature.
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Fig. 2. The characterization of structural morphology
and chemical compositions for the as-prepared samples.
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Fig. 3. The structure of TiO2 sea-urchin-like structure
based DSSCs.

From the above results and discussions, the follow-
ing formation mechanism of sea-urchin-like structures
is proposed. At an early stage, the layer-like flake
structures were formed and started to roll up into nan-
otubes in the NaOH solutions at very high tempera-
ture. The size and shape of the nanotubes were con-
trolled by reaction conditions such as temperature and
reaction time. At the second stage, the as-prepared
TiO2 nanotubes were self-assembled into sea-urchin-
like structures under alkali aqueous conditions. The
function of NaOH solution is to make the nanotubes
aggregate and form sea-urchin-like structures as the
final products. The reaction in this stage was carried
out at room temperature. Therefore, the sea-urchin-
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like structures are the aggregation of TiO2 nanotubes
under alkali aqueous conditions. This method is dif-
ferent from previous reports on the synthesization of
TiO2 sea-urchin-like structures,[15,17] which involved
H2O2 for an enhanced oxidation process in the pres-
ence of NaOH solution. The approach demonstrated
here provides a facile template-free cost-effective way
to synthesize a 3D assembly of TiO2 sea-urchin-like
structures with high repeatability and a new route
for the self-assembly of nanotubes/naowires into mi-
crostructures.

TiO2 sea-urchin-like structures possess advantages
such as larger surface areas and an ordered elec-
tron conduction network compared with structures
in random arrangement and are crucial for applica-
tions such as active photocatalysis for the splitting
of water/degradation of pollutant[8] and solar energy
harvesting.[9,17] In the following, the application of
TiO2 sea-urchin-like structures for DSSC will be dis-
cussed. The structure of a TiO2 sea-urchin-like struc-
ture based DSSC is shown schematically in Fig. 3. The
TiO2 sea-urchin-like structures were deposited onto
the FTO-coated glass substrate from ethanol solu-
tion. After evaporation of the ethanol solvent, the
TiO2 sea-urchin-like structures were sensitized in a
0.5mM N719 dye solution[16] in ethanol for two hours.
A Pt layer evaporated on a precleaned glass substrate
served as the counter electrode and was placed in par-
allel with the FTO glass substrate. The internal space
of the device was subsequently filled with a liquid elec-
trolyte (0.5 M LiI, 50 mM I2, 0.5 M 4-tertbutylpyridine
in 3-methoxypropionitrile) by the capillary effect.[16]

The entire cell was then fully packaged and covered
for DSSC performance measurement. The same fabri-
cation process was applied to a TiO2 nanotube-based
DSSC.
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Fig. 4. J–V curves of the sea-urchin-like structures and
nanotube-based DSSCs under one full-sun illumination.

The DSSCs were irradiated using a solar simula-
tor (Newport, 300 W Model 91160) with an AM 1.5
spectrum distribution to simulate full-sun intensity
(100 mW·cm−2). The plots of current density versus

voltage (J–V ) were recorded for both TiO2 sea-urchin-
like structures and nanotube-based DSSCs to evaluate
their performance. In our experiments, most of the
sea-urchin-like structure based DSSCs showed higher
efficiency than that of the nanotube-based DSSCs.
A typical comparison in performance of TiO2 nan-
otubes and sea-urchin-like structure based DSSCs is
shown in Fig. 4. It can be seen that the open cir-
cuit voltages Voc and short-circuit current densities
Jsc for both configurations of DSSCs can be obtained
as about 0.57 V, 2.1 mA/cm2 for sea-urchin-like struc-
ture based DSSCs and about 0.51V, 1.4mA/cm2 for
nanotube-based DSSCs. The fill factors FF are de-
termined as 0.36 and 0.38 for sea-urchin-like struc-
tures and nanotube-based DSSCs, respectively. The
energy conversion efficiencies are hence calculated as
about 0.43% and 0.27% for the sea-urchin-like struc-
tures and nanotube-based DSSCs, respectively. An
enhanced solar energy harvesting efficiency with an
enhancement factor of 1.6 was achieved by replacing
the random nanotube network with an ordered assem-
bly of nanotubes in sea-urchin-like structures, with
all other conditions remaining the same. This can be
understood by the fact that the TiO2 sea-urchin-like
structures are more ordered compared with the TiO2

nanotubes with random orientations (Fig. 2), which
can increase the diffusion length and hence the lifetime
of photon-induced electrons, and reduce the probabil-
ity of parasitic conducting paths, which are detrimen-
tal for efficient carrier collection. For a random net-
work of TiO2 nanotubes, the electrons generated by
incident photons move in a random-walk manner, re-
sulting in a decreased output current. In addition, the
dye molecules are more easily absorbed into the TiO2

sea-urchin-like structures when the constituent TiO2

nanotubes are radially aligned, while the TiO2 nan-
otubes in the random network are lying flat in the 2D
plane, which significantly reduces the area for absorp-
tion of light-harvesting dye molecules. It can be ob-
served clearly from Fig. 2 that there are more spaces
in sea-urchin-like structures as compared with nan-
otubes. These TiO2 sea-urchin-like structures are also
beneficial for increasing the effective amount of TiO2

nanotubes that can be illuminated by sunlight, which
also means that a larger number of dye molecules ab-
sorbed on the TiO2 nanotubes will interact with the
illuminating sun light and generate an enhanced out-
put power.

In conclusion, we have presented a facile, cost-
effective, simple and template-free method for the
self-assembly of TiO2 sea-urchin-like structures and
proposed a probable formation mechanism. This
typical synthesis process involves the initial forma-
tion of tubular nanostructures and the subsequent
self-assembly of nanotubes into micrometer-scale sea-
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urchin-like structures under alkali aqueous conditions.
Alkali aqueous solutions play an important role in the
formation of TiO2 sea-urchin-like structures. The ap-
plication of as-synthesized TiO2 sea-urchins-like struc-
tures in DSSCs has also been investigated and we
have shown an improved efficiency compared with
DSSCs based on random TiO2 nanotubes, demon-
strating promising potential in applications such as
high-efficiency solar energy harvesting, photocatalysis
and opto-electronics devices.
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